已知a属于R,函数f(x)=a/x+Inx-1,g(x)=(Inx-1)e^x+x(其中e为自然数对数的底数)
(1)求函数f(x)在区间(0,e]上的最小值(2)是否存在实数x0属于(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?存在请求出x0
人气:423 ℃ 时间:2019-08-22 08:29:06
解答
(1)f(x)=a/x+Inx-1定义域为(0,+∞)
f(x)'=-a/x²+1/x=0 解得x=a
①a≤0时
f(x)'=-a/x²+1/x>0恒成立∴f(x)在定义域上单调递增∴取不到最小值
②0e时
x=e时最小值a/e
(2)g(x0)‘=0
g(x0)'=e^x0(lnx0+1/x0-1)+1=0
g''(x)=(-1/x^2+2/x+lnx-1)e^x=h(x)e^x
h'(x)恒大于0,h(1)=0
即g'(x)≧g'(1)=1>0
所以不存在x0使g'(x0)=0
推荐
- 已知函数f(x)=(e^x/a)+(a/e^x),(a>0)是r上的偶函数.(e貌似是自然数对数de 底数)求:
- 已知函数f(x)=(ax^2+bx+c)e^x,其中e为自然数对数的底数,a,b,c为常数,若函数f(x)在=-2处取得极值
- 若实数t满足f(t)=-t,则称t是函数f(x)的一个次不动点,设函数f(x)=Inx与函数g(x)=e^x(其中e为自然数对数的底
- 设函数f(x)=p(x-1/x)-Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
- 已知函数f(x)=(ax^2+x)e^x,其中e是自然数的底数,a属于R (1)当a0,(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围 (3)当a=0时,求整数K的所有值,使方程f(x)=x+2在[K,k+1]上有解
- 英语翻译
- 走同样的路程,甲要5小时走完,乙要7小时走完,甲、乙的速度比是( ) A.5:7 B.7:5 C.17:15
- 四年级语文暑假作业本人教版第67页的答案
猜你喜欢