一道求定积分的题目!
∫1/(1+sinx),(上限是π/4,下限是0)
人气:254 ℃ 时间:2020-06-05 17:45:47
解答
∵1/(1+sinx)=1/[sin²(x/2)+cos²(x/2)+2sin(x/2)cos(x/2)]
=1/[sin(x/2)+cos(x/2)]²
=sec²(x/2)/[1+tan(x/2)]²
∴原式=∫(0,π/4)sec²(x/2)/[1+tan(x/2)]²dx
=2∫(0,π/4)d(1+tan(x/2))/[1+tan(x/2)]²
={-2/[1+tan(x/2)]}|(0,π/4)
=2-√2
推荐
猜你喜欢
- 一道高等数学题,欲用围墙围成面积为216平方米的矩形,且在正中间砌一堵墙,问长,宽如何取,才能是材料最
- quite的词性及用法?
- 已知tanα=-1/3,cosβ=(根号5)/5,α,β∈(0,π).
- 如图,三角形ABC的面积是120平方厘米,D是BC 的中点,AE=1/3BE,EF=1/2FD,那么三角形AFD的面积是_平方厘米.
- 帷帐之核是什么东西
- 描写秋景的句子
- 跪求求一篇有关音乐介绍的英语作文650词左右!
- 已知O为坐标原点,A(0,2),B(4,6),OM=t1向量OA+t2向量AB,求点M在第一象限或第三象限的充要条件