3²=4+5;5²=12+13;7²=24+25.写出规律,使用勾股定理证明.
人气:445 ℃ 时间:2019-10-19 17:23:11
解答
按照所给之等式,可发现“每个奇数的平方可写成两个相邻正整数之和的形式”.用符号来表示如下:
(2n+1)²=(2n²+2n)+(2n²+2n+1).
可以这样证明:对于满足勾股定理(2n²+2n)²+(2n+1)²=(2n²+2n+1)²
(2n²+2n+1)²-(2n²+2n)²=(2n²+2n+1+2n²+2n)[2n²+2n+1-(2n²+2n)]=4n²+4n+1=(2n+1)²
推荐
- 3²=4+5 ,5²=12+13 ,7²=24+25 ,9^2=40+41.可发现什么规律?结合勾股定理有关知识说明规
- 3的平方=4+5 5的平方=12+13 这不是巧合,而是有规律可寻,究竟有什么规律呢?请用勾股定理来证明
- 勾股定理的5种证明方法
- 如何证明勾股定理,它的原理是什么?明天期中考试,
- 勾股定理的3种证明方法
- 《藏戏》《各具特色的民居》《和田的维吾尔》的好词好句写上
- 把一个高是4厘米的圆柱体沿着底面直径垂直切开,将圆柱分成两半,它的表面积增加了32平方厘米,这个
- 生物学中观察植物的基本方法是什么
猜你喜欢