双曲线x^2/9-y^2/16=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2
则点P到x轴的距离为
∵x^2/9-y^2/16=1
∴a=3 b=4 c=5 F1(-5,0).F2(5,0)
P(x1,y1) y1既为点P到x轴的距离.
∵PF1⊥PF2
∴│PF1│^+│PF2│^=│F1F2│^=4c^=100
│PF1│-│PF2│=2a=6
∴(│PF1│-│PF2│)^+2│PF1││PF2│=100
(1/2)│PF1││PF2│=16
又三角形PF1F2面积
S=(1/2)×│F1F2│×│y1│=(1/2)│PF1││PF2│=16
所以y=16/10
为是么答案是16/5啊?我哪里错啦?
人气:286 ℃ 时间:2019-08-20 16:51:05
解答
最后一步错了
S=(1/2)×│F1F2│×│y1│=(1/2)│PF1││PF2│=16
│F1F2│=2C=10,前面还有个1/2.所以Y1应该是16/5
推荐
- 若F1,F2是双曲线X方/9-Y方/16=1的两个焦点,P在双曲线上,且PF1×PF2=32,求∠F1PF2的大小
- 若F1,F2是双曲线x^2/9-y^2/16=1的两个焦点,点P在双曲线上,且绝对值(PF1乘以PF2)=32,求角F1PF2的值
- 双曲线x29−y216=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.
- 已知F1和F2是双曲线x^2/9-y^2/16=1的两个焦点,点P在双曲线上,并且|PF1|·|PF2|=32,求∠F1PF2的大小.
- 已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,若双曲线上存在一点P,使得|PF1|乘|PF2|=32
- 写作文的好词,越多越好)(成语)
- Is this the recorder you want to have repaired?句
- 已知分式【(x-2)(x+3)】分之【(x+1)(x-2)】请问
猜你喜欢