如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r-m.
在⊙O中,根据相交弦定理,得QA•QC=QP•QD.
即(r-m)(r+m)=m•QD,所以QD=
| r2−m2 |
| m |
连接DO,由勾股定理,得QD2=DO2+QO2,
即(
| r2−m2 |
| m |
解得m=
| ||
| 3 |
所以,
| QC |
| QA |
| r+m |
| r−m |
| ||
|
| 3 |
故选D.
| QC |
| QA |
A. 2| 3 |
| 3 |
| 3 |
| 2 |
| 3 |
如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,| r2−m2 |
| m |
| r2−m2 |
| m |
| ||
| 3 |
| QC |
| QA |
| r+m |
| r−m |
| ||
|
| 3 |