已知向量a=(cosx+sinx,sinx),b=(cosx-sinx,-2cosx),设f(x)=a*b
求函数f(x)的最小正周期,对称中心坐标及其对称轴方程
人气:262 ℃ 时间:2019-08-19 06:54:21
解答
用pi表示圆周率.因为 a*b=(cosx+sinx,sinx)*(cosx-sinx,-2cosx)=(cosx+sinx)(cosx-sinx)-2sinxcosx=[(cosx)^2-(sinx)^2]-2sinxcosx (对前后两项均用倍角公式)=cos2x-sin2x (再由辅助角公式)=根号2*cos(2x+pi/4)因此...
推荐
- 已知向量a=(cosx+sinx,sinx)向量b=(cosx-sinx,2cosx),设f(x)=向量a*向量b,当x∈[-π/4,π/4]时,求函数f(x)的最大值及最小值 .
- 已知向量a=(5√3cosx,cosx),b=(sinx,2cosx)函数f(x)=ab+b^2
- 已知a=(sinx+2cosx,3cosx),b=(sinx,cosx),且f(x)=a•b. (1)求函数f(x)的最大值; (2)求函数f(x)在[0,π]上的单调递增区间.
- 已知向量a=(5根号3cosx,cosx)b=(sinx,2cosx),函数f(x)=ab+b^2,求F(X)最小正周期
- 已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0
- 从山脚到山顶的路程是168米,小巧上山和下山一共用去8分钟,他的平均速度是多少?
- This last scene shows you what will happen at the end of the harvest:the famous Calabrian macaroni-eating competition!
- 用不毛之地和蹒跚造句 并用上一种修辞
猜你喜欢