已知圆C;x^2+y^2-2ax-2(2a-1)y+4(a-1)=0 ,a属于实数,证明圆C恒过定点
人气:463 ℃ 时间:2019-10-20 19:26:31
解答
重新整理得:
a(-2x-4y+4)+x^2+y^2+2y-4=0
a属于R,所以有:
-2x-4y+4=0……1
且x^2+y^2+2y-4=0……2
由1式得x=2y-2
带入2式得(2y-2)^2+y^2+2y-4=0
解得y=0或6/5
当y=0时 x=2
当y=6/5时 x=2/5
所以圆过定点(2,0)
推荐
- 已知方程x^2+y^2-2ax=2(a-2)y+2==0表示圆,其中a不等于1,求证:不a取不为1的任何实数,上述圆恒过定点
- 已知圆的方程是x^2+y^2-2ax+2(a-2)y+2=0,其中a不等于1,且a属于全体实数.求证
- 已知圆C:(x+1)^2+(y-2)^2=25,直线L:(2m+1)x+(m+1)y-7m-4=0证明:无论m取什么实数,直线L与圆恒交于亮点
- 已知圆:x2+y2-2ax-2(2a-1)y+4(a-1)=0(a属于R).证明:1圆c过定点2
- 已知圆(x-1)^2+(y-2)^2=25及直线l:(2m+1)x+(m+1)y=7m+4(m属于R,证明不论m取何实数,l与c恒相交
- clothes和clothing有什么区别?
- 6x-x∧2=5求步骤
- 是道C语言编程题,读入20个整数,统计非负数个数,并计算非负数之和
猜你喜欢