> 数学 >
求((a*x+b*x+c*x)/3)*(1/x)当x趋近于0的极限
人气:477 ℃ 时间:2020-05-08 17:16:38
解答
先取对数
ln(a^x+b^x+c^x)/3)^(1/x)
=[ln((a^x+b^x+c^x)/3)]/x
罗必塔,上下同时求导:
[3/(a^x+b^x+c^x)]*1/3*(a^xlna+b^xlnb+c^xlnc)
x趋近于0
a^x→1 b^x→1 c^x→1
则上式=1/3(lna+lnb+lnc)=ln(abc)^(1/3)
再取e^ln(abc)^(1/3)=(abc)^1/3
所以极限是(abc)^1/3
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版