> 数学 >
等腰三角形ABC中,顶角∠A=36度,底角的平分线BD交AC于D,得D是线段AC的黄金分割点,若AC=10厘米,求AD的长
人气:154 ℃ 时间:2019-09-26 14:40:26
解答
AD=10*0.618=6.18 cm
分析:关键是看CD 和AD的大小问题,就知道谁是黄金分割的大的一边了.
因为AB=AC ,∠A=36度
所以∠ABC=∠BCD=72度
所以∠ABD=∠CBD=36度
所以 AD=BD
因为∠CBD < ∠BCD,由大角对大边
所以CD
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版