设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx
人气:261 ℃ 时间:2019-08-16 22:28:25
解答
这个题用积分中值定理比较困难,不妨换个角度用微分中值定理.如果设F(x) = ∫ f(t)dt,则所证式可变为(1-ξ)F'(ξ) = F(ξ),是一道比较常见的微分中值定理的题目.由此观察,我们给出证明如下.设g(x) = (x-1)*∫ f(t)dt,...
推荐
- 设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
- 设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0,2),使得f(a)'+f(a)=1
- 设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2)
- 设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)=0
- 设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f(a)
- 已知如图,四边形ABCD中,AB=BC=1,CD=根号3,DA=1,且∠B=90°.
- 鲜为人知的造句
- 请你算一算: 松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天中有几天晴天,几天是雨天?
猜你喜欢
- what is important when selling a new porduct?
- 在同一直线上有四点A、B、C、D,AD=九分之五DB,AC=五分之九CB,且CD=4,求AB
- 哪年哪月我国第一颗原子弹爆炸成功
- 设α是第三项限角,问是否存在实数m使得sinα、cosβ是关于方程8乘(X的平方)-6mx+2m+1=0的根?
- 名词解释题:政府公共关系传播
- 一种儿童专用自行车前轮直径是28cm,后轮直径是35cm,后轮行走32圈的路程,则前轮行走了多少圈?算术写出来!
- 一个等腰梯形周长是48Cm面积是96Cm.高是8Cm.梯形的一条腰是多少厘米?
- 20个同学站一排,从左数明明在17位,从右数君君在15位 明明和君君中间有几个同