4.若(1-2x+3x^2)^5=a0+a1x+a2x^2+….+a10x^10,则a1+a2+a3+…+a10=______
人气:372 ℃ 时间:2020-08-10 06:49:01
解答
a1+a2+a3+…+a10就是展开式中x=1的情形
令x=1,得到
(1-2+3)^5=a0+a1+.+a10=2^5=32
多个a0,单独来求
a0是常数项,显然a0=1
因此a1+a2+.+a10=31
推荐
- 若(x^2-3x+2)^5=a0+a1x+a2x^2+...+a10x^11,则(1)a2,(2)求a1+a2+a3+...+a10
- 若(2根号2 - 3x)^10=a0+a1x+a2x^2+L+a10x^10,则(a0+a2+L+a10)^2-(a1+a3+L+a9)^2的值为
- 若(1-2x)∧10=a0+a1x+a2x∧2+a3x∧3.+a10x∧10,则a1+a2+a3.+a10=
- (3x-4)^10 =a0 +a1x +a2x^2 +…… +a10x^10 ,则a0 +a1 +a2 ……+a10
- (x^2-3x+2)^5=a0+a1x+a2x^2+……+a10x^10.求a0+a1=
- -1到-5之间只有3个负数._.(判断对错)
- 一道六年级语文题~~快来~急
- different,in,Shanghai,was,many,years,ago,life,very连词成句
猜你喜欢