如图,过抛物线Y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M.N向准线L作垂线,垂足分别为M1,N1
(1)求证:FM1⊥FN1
人气:299 ℃ 时间:2020-05-15 21:23:42
解答
设直线斜率为k,因为直线过焦点(p/2,0),所以直线为y=k(x-p/2),所以x=y/k+p/2,联立y2=2px,得到ky2-2py-p2k=0.所以y1*y2=-p2PM1的斜率k1=y1/(-p),PM2的斜率k2=y2/(-p),两个斜率之积为k1*k2=y1*y2/p方=-1.所以FM1⊥FN1...
推荐
- 如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,则此抛物线的方程为
- 已知过抛物线y²=2px(p>0)的焦点F的直线与抛物线相交于M,N两点自准线l作垂线,垂足分别为M1,N1
- 设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
- 过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M,N向准线l作垂线,垂足分别为M1,N1,则∠M1FN1等于( ) A.45° B.60° C.90° D.120°
- 如图,倾斜角为α的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点. (1)求抛物线的焦点F的坐标及准线l的方程; (2)若α为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|co
- 手用英语怎么读
- 匆匆这篇课文,作者围绕"-------"展开叙述,先写---------,再写------.最后,发出“-------”的感叹
- 《生活中的一朵浪花》 600字作文
猜你喜欢