> 数学 >
已知数列{an}的前n项和Sn=n*2-4n+1,则|a1|+|a2|+…+|a1|0的值为
人气:309 ℃ 时间:2020-04-21 03:57:27
解答
a1=-2,
从a2起 an=Sn-S(n-1)=(n^2-4n+1)-[(n-1)^2-4*(n-1)+1]=2n-5,
所以a2=-1,a3=1,当n≥2时,an=2n-5>0
所以|a3|+|a4|+…+|a10|=S10-a1-a2=164
所以|a1|+|a2|+…+|a10|=164+|a1|+|a2|=164+2+1=167
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版