已知f(x)=-x³-x+1,(x属于R),证明y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值x至多只有一个
人气:227 ℃ 时间:2019-09-29 03:10:26
解答
设,x1>x2 ,x1x2∈(-1,1)
f(x1)-f(x2)=(x1^3+x1+1)-(x2^3+x2+1)=( x1^3-x2^3)+( x1-x2)
因为x1>x2 ,所以( x1^3-x2^3)>0,( x1-x2) >0
所以f(x1)-f(x2) >0
所以f(x)在(-1,1)内为单调递增函数.
且f(-1)=-1,f(1)=3
所以,存在唯一的x0,x0 ∈(-1,1),且f(x0)=0
因为f(x)在(-1,1)内为单调递增函数,所以,f(x)的函数图象在直角坐标系中有且仅有可能和x轴相交一次,所以满足等式f(x)=0的实数值x至多只有一个.
推荐
- 已知f(x)=-x^3-x+1(x∈R),证明Y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值X至多只有一个
- 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y),判断fx的奇偶性并证明
- 已知函数f(x)的定义域是(0,正无穷),当x>1时,f(x)
- 已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数. (1)证明:对任意的x1,x2∈[-1,1],有[f(x1)+f(x2)](x1+x2)≤0 (2)解不等式f(1-a)+f(1-a2)<0.
- 已知函数f(x)的定义域为(0,正无穷),当x>1时,f(x)>0,且f(xy)=f(x)+f(y).证明f(x)在定义域上为增函数.
- 细胞内作用的蛋白质需要高尔基体再加工么?
- Who is not here,Lily?---_____ B ____.--- __________?---- He is fine now.A.It’s Jeff; How are
- 多用电表测小灯泡电压电流电阻时,是不是要求他们所在电路要断开电源
猜你喜欢