设a,b,c是不全相等的任意整数,若x=a2-bc,y=b2-ac,z=c2-ab.求证:x,y,z中至少有一个大于零.
人气:150 ℃ 时间:2020-04-30 04:01:34
解答
证明:假设x,y,z都小于0,
∵x=a2-bc,y=b2-ca,z=c2-ab,
∴2(x+y+z)=2a2-2bc+2b2-2ca+2c2-2ab=(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=(a-b)2+(b-c)2+(c-a)2<0,
∴这与(a-b)2+(b-c)2+(c-a)2≥0矛盾,
故假设不成立,
∴x,y,z中至少有一个大于零.
推荐
- 若abc=1,试解关于x的方程(x/1+a+ab)+(x/1+b+bc)+(x/1+c+ac)=2006
- 设a,b,c是不全相等的任意整数,若x=a2-bc,y=b2-ac,z=c2-ab.求证:x,y,z中至少有一个大于零.
- 设a,b,c为不全相等的实数,x=a^2-bc,y=b^2-ac,z=c^2-ab,证明x,y,z至少有一大于0
- 设a.b.c是不全相等的任意实数,若x=a-bc,y=b-ac,z=c-ab,z则x、y、z为 A都小于0 B都不大于0接下
- 设a,b,c是不全相等的任意整数,若x=a2-bc,y=b2-ac,z=c2-ab.求证:x,y,z中至少有一个大于零.
- 细菌分解代谢产物的检测和鉴定是如何实现的?
- 具体
- 人类能大量捕杀动物吗?
猜你喜欢