过点M(m,0)且斜率为-√3/3的直线与圆x2+y2=1交于两点A,B,且向量AM=2向量MB,求m的值
人气:291 ℃ 时间:2019-09-01 10:46:34
解答
设交点为A(x1,y1),B(x2,y2)
设过点M(m,0)的直线为y=-√3/3*(x-m)
带入圆方程得
x^2+(x-m)^2/3=1,整理得
4x^2-2mx+m^2-3=0,由韦达定理有
x1+x2=m/2, x1x2=(m^2-3)/4;y1+y2=-(x1+x2-2m)/√3=√3/2*m
y1y2=(x1-m)(x2-m)/3=[x1x2-m(x1+x2)+m^2]/3=(m^2-1)/4
又向量AM=(m-x1,-y1), 向量MB=(x2-m,y2)
且向量AM=2向量MB
∴有m-x1=2(x2-m), -y1=2y2
与上述韦达定理所得等式联立,可解得
x1=-2m, x2=5m/2
y1=√3*m, y2=-√3/2*m
m^2=1/7, m=±√(1/7)
∴m的取值为m=±√(1/7)
推荐
- 已知过点A(0,1),且斜率为k的直线l与圆c(X-2)^2+(Y-3)^2=1,相交于M,N两点(2)求证:向量AM.向量AN=定值
- 过点A(0,1)且斜率为k的直线l与圆(x-2)^2+(y-3)^2=1,相交于mn两点,求证:向量AM乘以向量AN为定值
- 已知定点(3,0),点A在圆x^+y^=1上运动,M是线段AB上的一点,且向量AM=1/3向量MB,则点的轨迹方程为?
- 圆C(x-7)^2+(y+1)^2=50,若斜率为-1的直线与圆C相交于不同的两点M,N求向量AM×向量AN的取值范围 A(2,4)
- 已知圆的方程x2+y2=25,过M(-4,3)作直线MA,MB与圆交于点A,B,且MA,MB关于直线y=3对称,则直线AB的斜率等于( ) A.−43 B.−34 C.−54 D.−45
- 1.设等差数列{an}的公差为-2,如果a1+a4+a7+……a97=50,则a3+a6+a9+……a99=?
- 重力势能的实验结论
- 比一个数的80%多9的数是13,求这个数.
猜你喜欢