设区域D={(x,y)|x²+y²≤1,x≥0},计算二重积分I=∫∫(1+xy)/(1+x²+y²)dxdy
人气:336 ℃ 时间:2019-09-27 18:43:07
解答
原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr (极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcosθ)/(1+r)]dr (用r代换r²)=1/2∫(-π/2,π/2)dθ∫(0,1){1/(1+r)+[1-1/(1+r)]si...
推荐
- 设区域D={(x,y)|x²﹢y²≤1,x≥0},计算二重积分I=∫∫(1+xy)/(1﹢x²﹢y²)dxdy
- I=二重积分∫∫((x²+ y²)^1/2-xy)dxdy,其中D=﹛((x,y)|x²+y²≤1﹜则I=
- 二重积分(xy+1)dxdy,D为 x²+y²>=1 ,x²+y²-2x
- 计算二重积分I=∫∫ x/(x²+y²)dxdy,其中D为区域x²+y²≤1,x≥0,y≥0.
- 计算二重积分∫∫D arctan﹙y/x﹚dxdy,D是1≤x²﹢y²≤4,y≥0,y≤x围成的区域
- I have many good friends ,but Bill is my _____ (good)friend
- 已知f(x)=2的x次幂,(x≥4) f(x)=f(x+2) ,(x
- 你的妈妈在英格兰是一名教师吗?翻译成英语
猜你喜欢