在四棱锥p-abcd中底面ABCD为菱形,PA垂直与底ABCD,AC=2根号2,PA=2,E是PC上的一点,PE=2EC,证明PC垂直于BED
人气:378 ℃ 时间:2019-09-25 08:34:37
解答
因为PA⊥底面ABCD,所以PA⊥BD
因为底面ABCD是菱形,所以BD⊥AC
所以BD⊥面ACP,所以PC⊥BD
设AC,BD交于点O
CE=PC/3=2√3/3
CE/CO=(2√3/3)/√2=√6/3=AC/PC
所以△PAC相似于△OEC
所以∠OEC=∠PAC=90°,即PC⊥EO
所以PC⊥平面BED
推荐
- 底面为菱形的四棱锥P-ABCD,角ABC=60¤,PA=AC=a,PB=PD=根号2倍a,PD上一点E,PE:ED=2:1,PC上是否有一点F...
- 在底面为菱形的四棱锥P-ABCD中,PA=AB=a,PB=PD=根号2a,AC=a,求直线PC与底面ABCD所成角的大小.
- 如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=根号2a,点E是PD的中点
- 如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2倍根号2 ,PA=2,E是PC上的一点,PE=2EC. (Ⅰ)证明:PC⊥平面BED;
- 四棱锥P-ABCD中,底面ABCD为正方形,PA垂直底面ABCD,AC=二倍根号二,PA=2,E是PC上一点PE=2EC.
- 若a=2的40次幂,b=3的32次幂,c=4的24次幂,谁最大,谁最小?现在就要
- 平面镜在日常生活中的应用
- 用刻度尺测量一个木块的长度,三次测量结果分别是3.11cm、3.12cm、3.15cm则最接近真实值
猜你喜欢