证明:上三角形的正交矩阵必为对角矩阵,且主对角线上的元素是正1或负1.
人气:219 ℃ 时间:2019-10-23 03:28:14
解答
设上三角形的正交矩阵A=[a1,a2,...,an]
a1=(a11,0,...,0)^T,a2=(a12,a22,0,...,0)^T,...,an=(a1n,a2n,...,ann)(akk≠0,k=1,2,...,n)
由a1^T*ak=0(k≠1)得:a11*a1k=0,即a1k=0(k=2,3,...,n)
同理:aij=0(i
推荐
猜你喜欢
- 为什么解微分方程的时候1/X的积分是lnX+C?
- 小学五年级数学难题, 数学高手过来帮忙急````
- That is more nonsense
- 40,12,37,39,45,18,10,26,91,69,234,76,600这些数中合数有哪些
- __is not certain where we will go tomorrow
- 关于家庭成员的不同习惯的英语作文
- 一台电脑原价500元,再降价五分之一,再涨价五分之一,现价多少元?
- 一道关于概率的数学题,