设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为______.
人气:355 ℃ 时间:2020-03-23 22:34:02
解答
n阶矩阵A的各行元素之和均为零,
说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,
由于A的秩为:n-1,
从而基础解系的维度为:n-r(A),
故A的基础解系的维度为1,
由于(1,1,…,1)T是方程的一个解,不为0,
所以Ax=0的通解为:k(1,1,…,1)T.
推荐
- 设A是n阶矩阵,对于齐次线性方程组AX=0,如果A中每行元素之和均为0.且r(A)=n-1,则方程组的通解是?,如果每个n维列向量都 是方程组的解,则r(A)=?
- 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_.
- 设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 aη1+bη2 ..
- 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_.
- 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_.
- 为什么都说鞭炮污染严重,会产生大量有毒气体,会造成空气污染,再者说,只有过年和
- 求一篇关于网络的危害的英语作文 假如你是李平 你的笔友王强沉迷电脑游戏严重身心健康
- 靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.
猜你喜欢