(1)∵√3tanAtanB=tanA+tanB+√3
∴√3(tanAtanB-1)=tanA+tanB
∴√3=(tanA+tanB)/(tanAtanB-1)= -tan(A+B)=tanC
∴C=60°
(2)由正弦定理:2RsinC=c=1
∴R=1/√3
∴a^2+b^2=4R^2[(sinA)^2+(sinB)^2]
=4/3[(1-cos2A)/2+(1-cos2B)/2]
=4/3[1-(cos2A+cos2B)/2]
=4/3[1-cos(A+B)cos(A-B)]
=4/3[1+cos(A-B)/2]
∵ △ABC为锐角三角形 C=60°
不妨设A≤B
则 A≤B=120°-A