已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn
人气:259 ℃ 时间:2020-03-23 06:31:40
解答
an=2n-1
则a(n-1)=2n-3,相减得an-a(n-1)=2
而同时(n≥2)
an=b1/2+b2/2^2+b3/2^3+……+bn/2^n
a(n-1)=b1/2+b2/2^2+b3/2^3+……+b(n-1)/2^(n-1)
相减得
an-a(n-1)=bn/2^n
即bn=2^(n+1)
当n=1,a1=b1/2
→b1=2a1=2
故bn=2^(n+1),n≥2
bn=2,n=1
推荐
- 数列{an}的前n项和为Sn且Sn=n(n+1) 1 若数列{bn}满足an=b1/(3+1)+b2/(3^2+1)+b3/(3^3+1)+……bn/(3^n+1)
- 已知a1=1,a2=4,an+2=4an+1+an,bn=an+1an,n∈N* (Ⅰ)求b1,b2,b3的值; (Ⅱ)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证:Sn≥17n.
- 设数列{an}是一等差数列,数列{bn}的前n项和为Sn=2/3(bn−1),若a2=b1,a5=b2. (1)求数列{an}的通项公式; (2)求数列{bn}的前n项和Sn.
- 已知正数数列{an}的前n项和为Sn,且有Sn=1/4×(an+1)²,数列B1,b2-b1,b3-b2,...,bn-bn-1是首相
- 已知an=2n-1,数列{bn}满足:b1/2+b2/2^2+...+bn/2^n=an,求数列{bn}的前n项和Sn
- C9H20的35个同分异构体的结构简式
- I hope you can finish your task().A.success B.successful C.successful D.succed
- 已知向量OP=(cosθ,sinθ),向量OQ=(1+sinθ,1+cosθ)(θ∈[0,π]),则│PQ│的取值范围是____.
猜你喜欢