所以2sinAcosB-sinCcosB=sinBcosC
所以2sinAcosB=sin(B+C)
因为A+B+C=π
所以sin(B+C)=sinA,且sinA≠0
所以cosB=
| 1 |
| 2 |
| π |
| 3 |
所以0<A<
| 2π |
| 3 |
所以
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
又因为f(x)=
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
所以f(A)=sin(
| A |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
故函数f(A)的取值范围是(1,
| 3 |
| 2 |
| m |
| 3 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
| 1 |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |