所以2sinAcosB-sinCcosB=sinBcosC
所以2sinAcosB=sin(B+C)
因为A+B+C=π
所以sin(B+C)=sinA,且sinA≠0
所以cosB=
1 |
2 |
π |
3 |
所以0<A<
2π |
3 |
所以
π |
6 |
A |
2 |
π |
6 |
π |
2 |
1 |
2 |
A |
2 |
π |
6 |
又因为f(x)=
m |
n |
x |
2 |
π |
6 |
1 |
2 |
所以f(A)=sin(
A |
2 |
π |
6 |
1 |
2 |
故函数f(A)的取值范围是(1,
3 |
2 |
m |
3 |
x |
4 |
n |
x |
4 |
x |
4 |
m |
n |
1 |
2 |
π |
3 |
2π |
3 |
π |
6 |
A |
2 |
π |
6 |
π |
2 |
1 |
2 |
A |
2 |
π |
6 |
m |
n |
x |
2 |
π |
6 |
1 |
2 |
A |
2 |
π |
6 |
1 |
2 |
3 |
2 |