> 数学 >
lim 1(x/(x-1)-1/(lnx))
人气:240 ℃ 时间:2020-06-18 22:28:31
解答
lim (x→1) (x/(x-1)-1/(lnx))
=lim (x→1) [xlnx-(x-1)]/[(x-1)(lnx)] (0/0)
=lim (x→1) (lnx+1-1)]/[lnx+1-1/x]
=lim (x→1) xlnx/(xlnx+x-1) (0/0)
=lim (x→1) (lnx+1)/(lnx+1+1)
=1/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版