> 数学 >
求lim(X/X-1-1/lnx) x-1
人气:312 ℃ 时间:2020-04-20 03:11:43
解答
原式=
lim{x->1}(xlnx-x+1)/[(x-1)ln(1+x-1)] 利用ln(1+t)~t (t->0)化为:
=lim{x->1}(xlnx-x+1)/(x-1)^2 以下用洛必达法则
=lim{x->1}(lnx+1-1)/[2(x-1)]
=lim{x->1}(1/x)/2
=1/2.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版