证明A B中有一个可逆矩阵,若A可逆,则R(AB)=R(B)=R(BA)
人气:375 ℃ 时间:2020-03-23 22:56:39
解答
知识点:R(AB)<=min{R(A),R(B)}.
证明: 一方面有 R(AB)<=R(B)
另一方面, 由于A可逆, 有
R(B) = R(A^-1(AB)) <= R(AB)
综上, R(AB)=R(B).
同理可证 R(BA)=R(B).
推荐
- 设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA
- 证明如果A是可逆矩阵,则AB~BA
- 设A,B为n阶矩阵,且E-AB可逆,证明E-BA
- 设A,B是n阶矩阵,且A可逆,证明AB与BA相似.
- 已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆
- 分解因式2x²+x-3,急.
- k²x²-(2k+1)x+1=0有实数根.求K
- 如图,抛物线y=1/2x+mx+n(n≠0)与直线y=x交与AB两点,与Y轴交与点C,OA=OB,BC平行x轴
猜你喜欢