已知sin^3x+cos^3x=1,求sinx+cosx的值与sin^4x+cos^4x的值
人气:313 ℃ 时间:2020-03-19 13:15:21
解答
设sinx+cosx=t
sinxcosx=[(sinx+cosx)²-1]/2=(t²-1)/2
sin³x+cos³x
=(sinx+cosx)(sin²x+sinxcosx+cos²x)
=t[1+(t²-1)/2]=1
即t³+t-2=0
(t-1)(t²+t+2)=0
易知t²+t+2>0
故t=1
即sinx+cosx=1
故sinxcosx=0
sin^4x+cos^4x=(sin²x+cos²x)²-2sin²xcos²x
=1
推荐
猜你喜欢
- 设z=yf(x^2-y^2),其中f(u)为可微分函数,证明y^2 əz/əx +xy əz/əy=xz
- 设集合A={1,2,3,4,5,6,7,8,9,10}求所有的集合A的3元子集合(含有3个元素的子集)元素的和
- 大师…这个越语ban dang lam j day?ban da ngu chua……翻译成中文是什么意思?
- 暑假里王阿姨买了一台柜式空调长0.5米宽0.6米这台空调占有的空间有多大?
- 2 4 198
- 何谓高斯投影?高斯投影为何要分带?如何进行分带?
- 40+40%x=60(要过程)
- 关于初中物理的压力压强