高中立体几何三题,
1.在正方体AC1中,E是棱CC1上的点,且a=C1E/EC,(1)若平面BED1⊥平面BDD1B1,则a=_____;(2)若平面BED1⊥平面AB1C,则a=_____.
2.(1)菱形ABCD中,∠A=60°,AB=4,将其沿BD折成直二面角后,AC=_____;二面角A-CD-B的正切等于_____.
(2)在矩形ABCD中,AB=3,AD=4,将其沿BD折成直二面角,AC=_____.
3.已知ABCD是矩形,PA⊥平面ABCD,M是PC中点,PA=AD
(1)求证:平面MAB⊥平面PCD
(2)求二面角M-AB-C的大小
人气:447 ℃ 时间:2020-05-10 16:34:09
解答
1.(1)a=1,即E为CC1中点时,平面BED1⊥平面BDD1B1.连接BD1和B1D,交点为O在正方体BD1中,O点平分BD1和B1DE为CC1中点时,ED1=BE在等腰三角形ED1B中,EO为底边BD1上的中线∴EO⊥BD1同理有:EO⊥B1D∴EO⊥BB1D1D平面,则平面BE...
推荐
- 求高中立体几何题
- 在正方体ABCD-A1B1C1D1各个表面的对角线中,与AD1所成角为60°的有_条(填数字).
- 已知ABCDE为平面五边形,S为平面ABCDE外的一点,SA垂直底面ABCDE,SA=AB=AE=2,BC=DE=根号3,角BAE=角BCD=角CDE=120度,求B-SC-D
- 如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
- 在长方体ABCD-A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的角的余弦值为 _.
- 数学题☞2a²-3ab+4b²-5ab-6b²☞3a²-5a+2-6a²-3,其中a=-1
- 英语翻译
- 将一个长8分米,宽6分米,高4分米的长方体木料,截成两个长方体,则表面积增加了多少平方分米?
猜你喜欢