> 数学 >
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是
AD
的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.

(1)求证:P是△ACQ的外心;
(2)若tan∠ABC=
3
4
,CF=8
,求CQ的长;
(3)求证:(FP+PQ)2=FP•FG.
人气:435 ℃ 时间:2020-06-20 11:29:35
解答
(1)证明:∵C是AD的中点,∴AC=CD,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△PCQ中,PC=PQ,∵CE⊥直径AB,∴AC=AE∴AE=CD∴∠CAD=∠A...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版