设a,b,x,y∈R且满足a2+b2=m,x2+y2=n,求ax+by的最大值为 ⊙ ___ .
人气:203 ℃ 时间:2020-04-13 05:43:32
解答
由柯西不等式可知
(a
2+b
2)(x
2+y
2)≥(ax+by)
2,即
1≥(ax+by)
2,
∴ax+by≤
故答案为:
推荐
- 已知1/3≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的函数表达式.
- 设函数f(x)=ax2+x-a,x∈[-1,1]的最大值为M(a),则当a∈[-1,1]时M(a)的最大值为_.
- 设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 + 的最
- 已知1/3≤a≤1,若函数f(x)=ax^2-2x+1,在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a)
- 设a,b,x,y∈R且满足a2+b2=m,x2+y2=n,求ax+by的最大值为 ⊙ _ .
- The gap's being closed easily enables people to enjoy...
- 英语:so far this year we () a fall in house prices by between 3 and 5 percent
- I hate those people who like to take sth out of nothing.
猜你喜欢