>
数学
>
直线Ax+By+C=0与圆x
2
+y
2
=4相交于两点M,N,若满足C
2
=A
2
+B
2
,O为坐标原点,则
OM
•
ON
等于______.
人气:227 ℃ 时间:2019-11-06 09:52:13
解答
设M(x
1
,y
1
),N(x
2
,y
2
),则
OM
•
ON
=x
1
x
2
+y
1
y
2
由方程Ax+By+c=0与x
2
+y
2
=4联立
消去y得(A
2
+B
2
)x
2
+2ACx+(C
2
-4A
2
)=0
所以x
1
x
2
=
C
2
−4
A
2
A
2
+
B
2
同理,消去x可得:y
1
y
2
=
C
2
−4
B
2
A
2
+
B
2
所以x
1
x
2
+y
1
y
2
=
2
C
2
−4
A
2
−4
B
2
A
2
+
B
2
又C
2
=A
2
+B
2
,得:x
1
x
2
+y
1
y
2
=-2 即
OM
•
ON
=-2
故答案为:-2
推荐
直线ax+by+c=0与圆x2+y2=9相交于两点M、N,若c2=a2+b2,则向量oM乘向量oN(o 为坐标原点)等于?
已知直线kx-y+1=0与圆C:x2+y2=4相交于A,B两点,若点M在圆C上,且有OM=OA+OB(O为坐标原点),则实数k=_.
已知直线Ax+By+C=0(其中A*A+B*B=C*C,C≠0)与圆x*x+y*y=4交于M,N,O是坐标原点,则OM的向量乘ON的向量等于
直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点,若点M在圆上且有向量OM=向量oa+向量ob(o为坐标原点)求k
设O为坐标原点,C为圆(x-2)2+y2=3的圆心,且圆上有一点M(x,y)满足OM•CM=0,则y/x=_.
kalenjin women won all their events as well(同义句转换)
虚数的虚数次方:i^i唯一吗
一个圆锥与一个圆柱的底面积比是3:2,体积比是2:5,如果圆柱的高与圆锥高之和是36厘米,求圆锥的高是多少厘米.
猜你喜欢
The teachers ask the students not to talk in class(改为同义句)
主旨的意思
水果店共有苹果和梨380筐,巳知梨的筐数比苹果少十分之一,水果店有梨和苹果各多少筐?
为什么全球变暖后,一般中高纬度地区粮食产量增加?
《昙花》阅读答案
Miss Yee has never taken any painting lessons but she has a natural ability_____.
蚊子飞行时,翅膀一秒钟之内可振动500次,则翅膀每振动一次为
一个用后未甩的体温计示数是39摄氏度,如果用它先后去测体温分别是38摄氏度和40摄氏度的两个病人的体温时
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版