若顶点在原点,焦点在x轴上的抛物线与直线x-2y+2=0交于A,B两点,且AB的绝对值=8根号15,求抛物线方程
人气:142 ℃ 时间:2019-11-01 14:20:15
解答
设抛物线:y²=ax,把直线y=1/2·x+1,带入,化成关于x的一元二次方程形式x²-4(a-1)x+4=0设A(x1,y1),B(x2,y2),则x1+x2=4(a-1),x1·x2=4相交弦|AB|=8√15由相交弦长公式:|AB|=√(1+k²)·|x1-x2|得:(k=1/...弦长公式不是|AB|=√(1+k²)√(x1+x2)²-4x1x2吗?是的啊由相交弦长公式:|AB|=√(1+k²)·|x1-x2|得:(k=1/2,直线的斜率) √(1+1/4)·√[(x1-x2)²-4x1·x2]=√5/2·√(a²-2a)=8√15[(x1-x2)²???√5/2是(√5)/2,分母开出来了是x1+x2,打错了,不好意思,我在草稿纸上就是+算的,√(1+1/4)·√[(x1+x2)²-4x1·x2]=(√5)/2·√[16(a-1)²-16]=8√15∴2√5·√(a²-2a)=8√15∴a²-2a=(4√3)²∴a²-2a=48∴a²-2a-48=0∴a=8,或a=-6
推荐
- 若等轴双曲线的中心在原点,焦点在坐标轴上,与直线x-2y=0交于A、B两点,且绝对值AB=2根号15 求双曲线方程
- 已知顶点在原点,焦点在Y轴上的抛物线被直线X-2Y-1 =0截得的弦长AB为根号15,求抛物线方程?
- 等轴双曲线的中心在原点,焦点再X轴上,与直线X-2Y=0交于A.B两点,且绝对值AB=4根号15,求等轴双曲线的方
- 顶点在原点,焦点在x轴上的抛物线与直线y=2x+1相交于A,B两点,且|AB|=根号15,求抛物线方程
- 已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.
- 比一个数多四分之一的数是九分之七,求这个数.
- 语文是香甜可口的美食,让人---------------填四字短语
- y-2与x成正比例,当x=-2时,y=4,则y与x的函数关系式是( )
猜你喜欢