已知函数f(x)=ax^2+bx+1,(a,b为实数),x∈R
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-2kx是单调函数,求实数k的取值范围
人气:167 ℃ 时间:2019-08-19 11:28:09
解答
由定义域和值域可知a>0,由二次最值在对称轴处取到,可得-b/2=-1,得b=2,代入f(-1)=0,得a=1,所以f(x)求出来了.(2)写出g(x),要是g(x)单调,则对称轴不在定义域内,所以1-k<-2或1-k>2,求得k<-1或k>3,即取值范围k∈(-∞,-1)∪(3,+∞),
推荐
- 已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x0,且f(x)为偶函数,判断F(m)+F(n)能否大于零
- 已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x) x>0或-f(x) x0,且f(x)为偶函数,判断F(m)+F(n)能否大于0
- 已知函数f(x)=ax^2+bx+1,a,b为实数,x属于R.(1)若f(x)=0,有一个根为-1,且函数f(x)的值域为【0,∞】求
- 已知函数f(x)=ax^2+bx+1(a,b为实数),x∈R,1)若函数f(x)的最小值为f(-1)=0,求f(x)解析式,
- 已知a,b,c是实数,函数f(x)=ax^2+bx+c,g(x)=ax+b,当-1
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢