实数上的狄利克雷(Dirichlet)函数定义是
这是一个处处不连续的可测函数.
狄利克雷函数的性质
1.定义在整个数轴上.
2.无法画出图像.
3.以任何正有理数为其周期(从而无最小正周期).
4.处处无极限、不连续、不可导.
5.在任何区间上不黎曼可积.
6.是偶函数.
7.它在[0,1]上勒贝格可积
在很多时候,只是为了来说明某些问题的.
这个函数挺特殊,作为很多事情的反例,这个函数在任意一点都不存在极限且是以任意有理数为周期的周期函数(有理数相加得有理数,无理数加有理数还是无理数),同时这个函数在积分上也有应用,该函数黎曼不可积,而在其它一些积分中是可积的.