> 数学 >
若动圆与圆(x-2)^2+y^2=1外切,又与直线x= -1相切,求动圆的圆心轨迹方程
过程!
0-0
人气:470 ℃ 时间:2020-06-10 04:34:32
解答
设圆心是(x,y),半径是r
因为动圆与圆(x-2)^2+y^2=1外切
所以圆心间距离等于半径之和
因此(x-2)^2+y^2=(1+r)^2 (1)
与直线x= -1相切
所以|x+1|=r
把|x+1|=r代入(1)中
(x-2)^2+y^2=(1+|x+1|)^2
x^2-4x+4+y^2=1+2|x+1|+x^2+2x+1
圆心方程是
y^2=6x+2|x+1|-2
什么符号,指一下
肯定不能是y^2=-8x,你这上面随便取一点,比如取(-2,4),根本不满足题目的条件
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版