>
数学
>
函数
f(x)=x−a
x
在x∈[1,4]上单调递减,则实数a的最小值为( )
A. 1
B. 2
C. 4
D. 5
人气:135 ℃ 时间:2020-04-15 00:37:05
解答
求得函数的导数f'(x)=1-
a
2
x
,
∵函数
f(x)=x−a
x
在x∈[1,4]上单调递减,
∴f'(x)≤0即1-
a
2
x
≤0,对任意的x∈[1,4]成立
∴a≥2
x
对任意的x∈[1,4]成立,得a≥4
因此a的最小值是4
故选C
推荐
函数f(x)=x−ax在x∈[1,4]上单调递减,则实数a的最小值为( ) A.1 B.2 C.4 D.5
已知A 是实数,函数F(X)=根号X(X-A) (1)求函数F(X)的单调区间 (2)求函数F(X)区间【0,2】上的最小值
已知函数对任意实数都有f(-x)=f(x),f(x)=-f(x+1),且在[0,1]上单调递减,则f(7/2),f(7/3),f(7/5)的大小为_______________
1.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上单调递减,则实数a的取值范围是多少?
若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是_.
在消费者均衡点以上的无差异曲线的斜率大于预算线的斜率吗?为什么?
西欧和日本的经济恢复和发展过程中共同的因素有哪些?
简述蛋白质分离的常用方法及其原理,
猜你喜欢
我希望可以具体点的.
有甲乙两桶油甲重40千克乙重35千克从甲桶到多少有在乙桶使乙桶油是甲桶的1.5倍
在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.
he is a famous person in this r____ .(a large area or part)
李白的送别诗(至少2首)
已知,正三棱锥P-ABC中,侧棱PA=a,角APB=30度,D,E分别是侧棱PB,PC上的点,则三角形ADE的周长最小值为...
1、某商场衣服打八折后降了50元,这件衣服原价多少元?
标况下,7点5克某气体A和4克甲烷的体积相等,求A气体的密度;同温同压下,质量相等的锌镁铝分别与盐酸...
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版