
∵A为
![]() |
BC |
∴OA⊥BC,
∴∠OAE+∠AEG=90°,
∵∠AEG=∠FED,
∴∠OAE+∠FED=90°,
∵DE为圆的切线,
∴DE⊥BD,即∠FDE+∠ADB=90°,
∵OA=OD,
∴∠OAE=∠ADB,
∴∠FED=∠FDE,
∴DF=EF;
(2)连接AB,
∵BD为圆的直径,
∴∠BAD=90°,
∴∠ABE+∠AEB=90°,
∵OA⊥BC,
∴∠OAD+∠AEB=90°,
∴∠ABE=∠OAD=∠ADO,
∵∠BAE=∠DAB,
∴△ABE∽△ADB,
∴
AB |
AE |
AD |
AB |
在Rt△ABD中,根据勾股定理得:BD2=AB2+AD2=12+36=48,
则BD=4
3 |