已知三角形ABC的内切圆圆O分别和BC,AC,AB切与点D,E,F,如果AF等于2,BD等于7,CE等于4
1.求三角形ABC的三边长
2.如果P为弧DF上的一点,过点P做圆O的切线,交AB于点M,交BC于点N,求三角形BMN的周长.
人气:259 ℃ 时间:2019-08-23 10:56:08
解答
1.由切线定理可得 BD=BF=7,DC=CE=4,AF=AE=2 C△abc=(7+4+2)×2=26
2.由切线定理可得 MF=MP,ND=NP ,所以BM+BN+MN=BF+BD=14 ,即三角形BMN的周长为14
推荐
- 三角形ABC的内切圆O与AB、AC、BC分别相切于E、D、F,且AB等于6,BC等于11,AC等于7,则AE,BF,CD等于...
- 三角形ABC的内切圆与AC,BC,AB分别切于D,F,E且AB等于6,BC等于11,AC等于7,则AE等于多少?BF等于多少?CD等于多少?
- 在三角形abc中,ab=ac,内切圆o与边bc,ac,ab 分别切于d,e,f,若角c=30度,ce=2√3,求AC
- △ABC的内切圆⊙O与三边分别相切于D、E、F三点,AB=7,BC=12,CA=11,求AF、BD、CE的长.
- 如图,在△ABC中,BC=14cm,AC=9cm,AB=13cm,内切圆⊙O分别和BC、AC、AB切于点D、E、F,那么AF、BD、CE的长为多少?
- 24分之7加12分之1减15分之5的和乘48
- 五年级下册语文《与象共舞》的四字词语有哪些
- 2011年5月1日,为更好地维护公民的生命健康权,我国实施了哪项规定
猜你喜欢