已知A(2,0),B(0,2),C(cosθ,sinθ),O为坐标原点
(1)向量AC*向量BC=-1/3,求sin2θ的值;
(2)若ㄧ向量OA+向量OCㄧ=根号7,且θ∈(-π,0),求向量OB与向量OC的夹角
人气:202 ℃ 时间:2019-09-27 18:48:57
解答
根据题意:向量OA=(2,0),OB=(0,2),OC=(cosθ,sinθ)|向量OA+向量OC|=根号7两边平方:|OA|²+|OC|²+2OA●OC=7∴4+1+4cosθ=7∴cosθ=1/2∵θ∈﹙﹣∏,0﹚∴θ=-π/3∴OC=(1/2,-√3/2)∴cos=OB●OC/(|OB||O...
推荐
- 已知A(3,0),B(0,3),C(cosα,sinα),O为原点坐标
- 已知平面内三点A(3,0),B(0,3),C(cosα,sinα),O为坐标原点.
- 在△OAB中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,π2],则当△OAB的面积达最大值时,则θ= _ .
- 在△OAB中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,π2],则当△OAB的面积达最大值时,则θ= _ .
- 已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐标原点.
- 补全对话(选择题)
- 四字词语接龙一清二白接下去是什么
- 音标为 u 的r__d; ___t 是什么单词啊
猜你喜欢