设f∈C[a,b],f(a)=f(b)=0,且f '(a)f '(b)>0,证明:存在x属于(a,b),使f(x)=0
是否需要f在(a,b)内可导这个条件呀?
这样直观地说f(x1)>0貌似还不够严谨,需要更严格的证明。。而且f '(a)和f '(b)是同号的。。
人气:451 ℃ 时间:2020-07-10 08:06:30
解答
不需要
不妨设f'(a)>0,f'(b)>0,
那么在(a,a+n)上存在x1,使得f(x1)>0,其中n为任意小的正实数
同理,在(b-n,b)上存在x2,使得f(x2)<0,又f在[a,b]上连续,所以在(x1,x2)上一定存在x,使得f(x)=0
刚才打错了,是同号
很严谨的,f'(a)=lim[f(x)-f(a)]/(x-a)>0,而且极限存在则左右极限都存在
右极限的情况下,(x-a)>0,f'+(a)>0,那么一定有f(x)>f(a)=0
推荐
- 一道高数题,
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)=0
- 设f(x)在(a,b)上连续,且f(a)=f(b),证明:存在点c属于(a,b)使得f(C)=f(c+b-a/2)
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点C属于(0,a),使f(c)+cf‘(c)=0
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c)次方*[f(d)+f'(d)]=1
- 一项工程,如果甲单独做6天可以完成这项工程的二分之一,如果乙单独做10天完成这项工程,现在甲、乙合作
- 什么的大海(形容词)
- 一个平行四边形的面积是625平方米,它的边长是多少米?
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋