在棱长为1的正方体ABCD-A’B’C’D’的面对角线A'B上存在一点P使得AP+D'P取得最小值,则此最小为
人气:114 ℃ 时间:2020-05-13 06:34:22
解答
求两个不同平面上的两条相连线段的长度和的最小值,我们一定要想到把两个平面摊在一个平面内,三点共线时,线段和取得最小值.这一定要牢记.还有就是蚂蚁在箱子上爬的最短路程也是这样做.
显然这题就是这种情况.那么我们就要把AA'B和A'BD'两个平面摊在一个平面上.因为D'A'垂直于平面AA'B'B,所以D'A'垂直于A'B,所以三角形A'BD'就是直角三角形,直角边为1,根号2,斜边为根号3.三角形AA'B很显然就是等边直角三角形,直角边为1,斜边为根号2.
你把这两个三角形画一起,A'B是公共边.连接D'A,和A'B的焦点就是P,此时三点共线.D'A就是所求的最小值.可以用余弦定理求出D'A.
我没有说清楚的地方可以继续提问
推荐
- 正方体ABCD—A1B1C1D1的棱长为1,P是面对角线BC1上一动点,Q是底面ABCD上一动点,则D1P+PQ的最小值等于?
- 正方体ABCD-A1B1C1D1的棱长为1,点P在线段A1B上,则|AP|+|D1P|的最小值为?
- 点P是棱长为1的正方体ABCD-A'B'C'D'内一点,且满足AP=3/4AB+1/2AD+2/3AA',则点P到棱长AB的距离为_________
- 正方体ABCD-A‘B’C‘D’中,对角线B‘D上有一动点P,棱CC’上有一动点Q,求[PQ]的最小值.
- 正方体ABCD-A1B1C1D1的棱长为1,P是线段A1B上的一点,则AP+D1P的最小值是_.
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢