求证:n阶矩阵A特征值全不为0,则A可逆
人气:451 ℃ 时间:2020-01-29 07:57:17
解答
若A不可逆,那么AX=0就有非零解
也就是AX=0*X了,这说明0是A的特征值,矛盾!
推荐
- 设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值
- 设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.
- 设A为可逆矩阵,λ是它的一个特征值,证明:λ≠0且λ-1是A-1的一个特征值.
- n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.
- 设三阶矩阵 A的秩为2,矩阵E-3A 不可逆,|E+A|=0 ,则 A的三个特征值为______
- 某银行在某时间段内办理了以下业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元.请你计算一下:银行在这段时间内总计是存入或取出多少元.(用有理数的减法做)
- it is( )and helps me learn a lot( )things.
- "浅草才能没马蹄“ 才能咋解释?
猜你喜欢