已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为
人气:492 ℃ 时间:2019-08-20 18:39:35
解答
椭圆离心率e=√(a²-b²)/a=√3/2,解得a=2b.
双曲线渐近线方程为y=±bx/a=±x/2
推荐
- 双曲线x2a2−y2b2=1和椭圆x2m2+y2b2=1(a>0,m>b>0)的离心率互为倒数,那么以a,b,m为边长的三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
- 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为
- 高二数学填空:椭圆x2/a2 y2/b2=1(a>b> 0),离心率为根号3/2,则双曲线x2/a2-y2/b2=1的离心率为
- 双曲线x2/a2 -y2/b2=1(a>0,b> 0),离心率为根号3,则椭圆x2/a2+y2/b2=1的离心率为
- 设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,
- 在一个左右长度不等的杠杆(2端为A,B点O是支点)上,AO小于BO,在A,B2端挂重物G1,G2后杠杆平衡,若此时将G1,G2同时向支点O移动相同距离,则
- 进来看看(用英语回答)
- "There will have less paper money"错在那里啊?急~~~~
猜你喜欢