在平面直角坐标系中,O为坐标原点,A、B、C三点满足三点满足向量OC=1/3向量OA+2/3向量OB.
(Ⅰ)求证:A、B、C三点共线;(Ⅱ)已知A(1,cosx)、B(1+cosx,cosx),x∈[0,π/2],f(x)=向量OA×向量OC-(2m+2/3)×向量AB的绝对值
若f(x)最小值为-3/2,求实数m的值
当m∈[0,1],x∈[0,π/2]时,存在t∈[0,1],使得t^2+t+4[1-f(x)]≤4t f(x),求m的最大值
前两小问我会做,请教第三问,
人气:271 ℃ 时间:2019-08-19 07:02:37
解答
1CA=OA-OC=OA-(OA/3+2OB/3)=(2/3)(OA-OB)CB=OB-OC=OB-(OA/3+2OB/3)=(-1/3)(OA-OB)故:CA=-2CB=2BC即:CA与BC共线,故:A、B、C三点共线2OC=OA/3+2OB/3故:OA·OC=OA·(OA/3+2OB/3)=|OA|^2/3+2OA·OB/3=(1+cosx^2)/3+2...
推荐
- 在平面直角坐标系中,O为坐标原点,ABC三点满足向量(OC=向量OA/3)+(2向量OB/3).求证:1.ABC三点共线,并
- 在平面直角坐标系中,o为原点,a(1,0),b(2,2),若点c满足向量oc=向量oa+t(向量ob-向量oa),
- 已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12),若OC=OA+OB,OD=OA-OB.(Ⅰ)求点C和点D的坐标;(Ⅱ)求OC•OD.
- 在平面直角坐标系中,O为坐标原点,A、B、C三点满足向量OC=2/3向量OA+1/3向量OB,则
- 在平面直角坐标系中,O为坐标原点,A,B,C三点满足向量OC = 2/3 向量OA + 1/3
- 正规的辩论赛的规则
- 计算R^n中基ε1,ε2,…,εn到εn,εn-1,…,ε1的过渡矩阵
- t度时某物质的溶解度为100g,则t度时,此物质的饱和溶液中下列质量关系正确的是:
猜你喜欢