证明若g(x)=x^2+ax+b,则g[(x1+x2)/2]小于等于(g(x1)+g(x2))/2
证明 若g(x)=x^2+ax+b,则g[(X1+X2)/2]≤[g(x1)+g(x2)]/2
人气:394 ℃ 时间:2020-07-31 11:16:12
解答
因为g[(X1+X2)/2]化简后是(gX1+gX2)/2
又因为[g(x1)+g(x2)]/2化简后是(gx1+gx2)/2
若x1>X1 x2>X2 则小于
若x1等于X1 x2等于X2 则等于
所以g[(X1+X2)/2]≤[g(x1)+g(x2)]/2
得证,
推荐
猜你喜欢
- The summer of that year, you who smiled so silly are still in my heart.有语病么?
- 风摇竹影有声画,雨打梅花无字诗的意思
- Jane is always careful,but her brother is always c 这个c填什么
- n为正整数,一个三角形的三边长分别为2n^2+2n+1,2n^2+2n,2n+1 ,判断此三角形是不是直角三角形,并说明理
- 为什么第1列元素和第17列元素组成的单质沸点变化趋势相反?谢谢了,大神帮忙啊
- 222×666×555+777×334怎样巧算
- 气压带和风带的向南或者向北移动 ,在图上是怎么表现的呢(高一地理)
- 已知关于x的方程2x2-kx+1=0的一个解与方程2x+1/1−x=4的解相同. (1)求k的值; (2)求方程2x2-kx+1=0的另一个解.