已知(x+1)^4=a4x^4+a3x^3+a2x^2+a1x+a0,那么你能否求出a0+a1+a2+a3+a4和a4+a2+a0
若能求出其值,如不能,说明理由。
人气:423 ℃ 时间:2020-03-27 14:17:56
解答
取x=1时,a4+a3+a2+a1+a0=16
取x=-1时,a4-a3+a2-a1+a0=0
两式相加得:2a4+2a2+2a0=16
∴a4+a2+a0=8
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?