已知实数:x=2+√3,y=√3 -2 , 求(x^4+y^4)÷x^2+y^2/x+y的值. /为分号
人气:228 ℃ 时间:2019-10-23 09:26:38
解答
已知,x = 2+√3 ,y = √3 -2 ,可得:x+y = 2√3 ,xy = -1 ;x^2+y^2 = (x+y)^2-2xy = 14 ,x^2y^2 = 1 ;x^4+y^4 = (x^2+y^2)^2-2x^2y^2 = 194 ;所以,[(x^4+y^4)÷(x^2+y^2)]∶(x+y) = (194/14)∶(2√3) = (97/42)√...
推荐
- 已知实数xy满足x^2+3x+y-3=0 则x+y的最大值为
- 若x、y都是实数,且y=√(x-3)+√(3-x)+8 求x+y的值
- 已知实数x,y满足x+2y-3=0,则2^x+4^y的最小值
- 已知实数x,y满足25/x^4-5/x^2=3,4(y^4)+2(y^2)=3 ,则25/x^4+4(y^4)的值为?
- 已知实数x,y,满足x-√x-1=√y+3-y,则x+y最大值是?
- 有一种新型的人造地球卫星,它的飞行速度每小时是28440千米,比单极火箭每小时的速度快76%
- 年份前用介词什么?月份前用介词什么?日子前用介词什么?是on还是in?
- 解方程:(1)-7x+2=2x-4;(2)-x=-五分之二x+1;(3)2x-3分之1=-3分之x+2;
猜你喜欢