已知双曲线X^2/9 - Y^2/16=1 ,过其右焦点F的直线交双曲线于PQ两点,PQ的垂直平分线交X轴于点M,则
|MF|/|PQ|的值为多少?
人气:290 ℃ 时间:2019-08-18 17:56:35
解答
双曲线x^2/9-y^2/16=1,则:a=3,b=4,c=5,右焦点F(5,0),右准线:x=9/5.
当直线PQ的斜率不存在时,易知:|MF|=0,所以|MF|/|PQ|=0.
当直线PQ的斜率存在时,设为k,又设点P(x1,y1),Q(x2,y2),(x1>0,x2>0)
则:k=(y2-y1)/(x2-x1),直线PQ:y=k(x-5).
又点P,Q在双曲线上,所以x1^2/9-y1^2/16=1,x2^2/9-y2^2/16=1,
两式相减得:(x1^2-x2^2)/9=(y1^2-y2^2)/16,
PQ的中点( (x1+x2)/2,(y1+y2)/2 ),
PQ的垂直平分线:y-(y1+y2)/2=-1/k*[x-(x1+x2)/2],
所以点M( (x1+x2)/2+k(y1+y2)/2,0 ),
又k=(y2-y1)/(x2-x1),(x1^2-x2^2)/9=(y1^2-y2^2)/16,
所以点M( 25(x1+x2)/18,0 ),
所以|MF|=|25(x1+x2)/18 -5|.
而|PQ|=|PF|+|QF|,
P到右准线的距离d1为:x1-9/5,Q到右准线的距离d2为:x2-9/5,
由双曲线的定义可知:|PF|/d1=|QF|/d2=e=5/3,
所以|PQ|=|PF|+|QF|=5/3(x1+x2-18/5),
所以|MP|/|PQ|=5/6.
方法就是这样,你自己再去算算吧.
推荐
- x^2/9-Y^2/16=1,过其右焦点f的直线交双曲线于p.q两点,pq的垂直平分线交x轴于点m,则mf/pq的值为
- 已知F1、F2是双曲线x216−y29=1的焦点,PQ是过焦点F1的弦,那么|PF2|+|QF2|-|PQ|的值是_.
- 已知F为双曲线C:x^2/9-y^/16=1的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ则△PQF的周长为 我想问为什么PQ不能交于双曲线两只
- 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦 角PF2Q=90度,求离心率
- 已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果∠PF2Q=90°,则双曲线的离心率( ) A.22-2 B.1+2 C.1+2 D.2+22
- 整数集与有理数集,自然数的区别?
- 若n是正整数,有理数x、y满足x+1y=0,则一定成立的是( ) A.x2n+1+(1y)n=0 B.x2n+1+(1y)2n+1=0 C.x2n+(1y)2n=0 D.xn+(1y)2n=0
- 将50g/L葡萄糖和9.0g/L Nacl溶液等体积混合,该混合液是临床上的等渗溶液吗?37摄氏度时,其渗透压为什么?
猜你喜欢