已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;
(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
人气:286 ℃ 时间:2019-10-08 19:43:59
解答
(1)g(x)=2x2-4x-16<0,∴(x+2)(x-4)<0,∴-2<x<4.∴不等式g(x)<0的解集为{x|-2<x<4}.…(4分)(2)∵|x2+ax+b|≤|2x2-4x-16|对x∈R恒成立,∴当x=4,x=-2时成立,∴|16+4a+b|≤0|4-2a+b|≤0,∴...
推荐
猜你喜欢
- 黄道和赤道的区别
- 家用电熨斗工作时的电阻为48.4欧,求它的电功率.
- ____the baby___ crying yet?(stop) 翻译,并说明原因
- 一辆质量为2000kg的汽车在平直的公路上匀速向西运动,如果他受到的牵引力是10000N
- 成语接龙:万众一心—( )—( )—( )—( )—事半功倍
- 7只小动物被困在圆圈里,请你画3条直线,把它们单独隔(ge)开.
- 月光下的夹竹桃的影子的特点
- 直线l过点A(-3,4),且点P(3,-2),Q(-1,6)到该直线的距离相等,求直线l方程及点A到P,Q所在直线的距离.