可以这样思考:
对于1,2,3这三个数字的排列,有3*2*1种.
拷贝你的图如下:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
看第一列,1,2,3 各出现2次.第二列也是各出现2次,第三列也是各出现2次.各列的不同只是前缀的(-1)^n*n不同.
所以式子可以这样理解:
b1+b2+b3
=-1*[(1+2+3)*2]+2*[(1+2+3)*2]-3*[(1+2+3)*2]
第一列第二列 第三列
=-(1+2+3)*2
=-12
而对于1,2,3,4的组合,有4*3*2*1种,就是说每个数字在各列出现的次数有3*2*1=6次.
所以式子为:
b1+b2+b3+b4
=-1*[(1+2+3+4)*6]+2*[(1+2+3+4)*6]-3*[(1+2+3+4)*6]+4*[(1+2+3+4)*6]
=2*[(1+2+3+4)*6]
=120
那么对于1,2,3,4,5的组合,有5*4*3*2*1种,每个数字每列出现4*3*2*1=24次,
你可以类似计算.